References

  • Achacoso, T. & Yamamoto, W. (1992). Ay's neuroanatomy of c. Elegans for computation, in. CRS Press, Boca Raton, FL, pp. 304.
  • Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H. & Grisoni, L. (2007). Sofa - an open source framework for medical simulation, Stud Health Technol Inform, Vol. 125, pp. 13-18.
  • Boyle, J.H. (2009). C. Elegans locomotion: An integrated approach, University of Leeds.
  • Bryden, J. & Cohen, N. (2008). Neural control of caenorhabditis elegans forward locomotion: The role of sensory feedback, Biol Cybern, Vol. 98 No. 4, pp. 339-351.
  • Chatterjee, N. & Sinha, S. (2007). Understanding the mind of a worm: Hierarchical network structure underlying nervous system function in c. Elegans, in Rahul, B. & Bikas, K.C. (Eds.), Progress in brain research. Elsevier, 0079-6123, pp. 145-153.
  • De Kamps, M. (2012). Towards truly human-level intelligence in artificial applications, Cognitive Systems Research, Vol. 14 No. 1, pp. 1-9.
  • Gabbiani, F. & Cox, S.J. (2010). Mathematics for neuroscientists, in. Academic Press, ISBN-10: 9780123748829
  • ISBN-13: 978-0123748829 pp. 498.
  • Goodman, D. & Brette, R. (2008). Brian: A simulator for spiking neural networks in python, Front Neuroinform, Vol. 2, pp. 5.
  • Grove, C.A. & Sternberg, P.W. (2011). The virtual worm: A three-dimensional model of the anatomy of caenorhabditis elegans at cellular resolution, in 18th International C. elegans Meeting, ISBN.
  • Haspel, G., O'donovan, M.J. & Hart, A.C. (2010). Motoneurons dedicated to either forward or backward locomotion in the nematode caenorhabditis elegans, The Journal of Neuroscience, Vol. 30 No. 33, pp. 11151-11156.
  • Hauptvogel, M., Madrenas, J. & Moreno, J.M. (2009). Spindek: An integrated design tool for the multiprocessor emulation of complex bioinspired spiking neural networks, in Evolutionary Computation, 2009. CEC '09. IEEE Congress on, ISBN, pp. 142-149.
  • Hobert, O. (2003). Behavioral plasticity in c. Elegans: Paradigms, circuits, genes, Journal of Neurobiology, Vol. 54 No. 1, pp. 203-223.
  • Lin, C.H. & Rankin, C.H. (2010). Nematode learning and memory: Neuroethology, in Breed, M.D. & Moore, J. (Eds.), Encyclopedia of animal behavior. Academic Press, 978-0-08-045337-8, Oxford, pp. 520-526.
  • Mailler, R., Avery, J., Graves, J. & Willy, N. (2010). A biologically accurate 3d model of the locomotion of caenorhabditis elegans, in Biosciences (BIOSCIENCESWORLD), 2010 International Conference on, ISBN, pp. 84-90.
  • Niebur, E. & Erdos, P. (1993). Theory of the locomotion of nematodes: Control of the somatic motor neurons by interneurons, Mathematical Biosciences, Vol. 118 No. 1, pp. 51-82.
  • Nordlie, E. & Plesser, H.E. (2010). Visualizing neuronal network connectivity with connectivity pattern tables, Frontiers in Neuroinformatics, Vol. 3.
  • Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. (2003). Database of synaptic connectivity of c. Elegans for computation in Technical Report of CCeP, Keio Future. Keio University, ISBN.
  • Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gomez-Rodriguez, F., Camunas-Mesa, L., Berner, R., Rivas-Perez, M., Delbruck, T., Shih-Chii, L., Douglas, R., Hafliger, P., Jimenez-Moreno, G., Ballcels, A.C., Serrano-Gotarredona, T., Acosta-Jimenez, A.J. & Linares-Barranco, B. (2009). Caviar: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory–processing– learning–actuating system for high-speed visual object recognition and tracking, Neural Networks, IEEE Transactions on, Vol. 20 No. 9, pp. 1417-1438.
  • Sleep, R. (2003). In vivo <=> in silico: High fidelity reactive modelling of development and behaviour in plants and animals. A grand challenge for computer science, in Grand Challenge Proposal, ISBN, pp. 10.
  • Stephens, G.J., Johnson-Kerner, B., Bialek, W. & Ryu, W.S. (2010). From modes to movement in the behavior of caenorhabditis elegans, PLoS One, Vol. 5 No. 11, pp. e13914.
  • Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H. & Chklovskii, D.B. (2011). Structural properties of the caenorhabditis elegans neuronal network, PLoS Comput Biol, Vol. 7 No. 2, pp. e1001066.
  • Wakabayashi, M. (2006). Computational plausibility of stretch receptors as the basis for motor control in c. Elegans, Univ. of Queensland, Australia.
  • White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. (1986). The structure of the nervous system of the nematode caenorhabditis elegans, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, Vol. 314 No. 1165, pp. 1-340.
  • Zhu, X. & Chen, Y. (2010). Improved fpga implementation of probabilistic neural network for neural decoding, in ICACIA 2010, ISBN, Sichuan, pp. 198-202.