References

  • Achacoso, T. & Yamamoto, W. (1992). Ay's neuroanatomy of c. Elegans for computation, in. CRS Press, Boca Raton, FL, pp. 304.
  • Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H. & Grisoni, L. (2007). Sofa - an open source framework for medical simulation, Stud Health Technol Inform, Vol. 125, pp. 13-18.
  • Boyle, J.H. (2009). C. Elegans locomotion: An integrated approach, University of Leeds.
  • Bryden, J. & Cohen, N. (2008). Neural control of caenorhabditis elegans forward locomotion: The role of sensory feedback, Biol Cybern, Vol. 98 No. 4, pp. 339-351.
  • Chatterjee, N. & Sinha, S. (2007). Understanding the mind of a worm: Hierarchical network structure underlying nervous system function in c. Elegans, in Rahul, B. & Bikas, K.C. (Eds.), Progress in brain research. Elsevier, 0079-6123, pp. 145-153.
  • De Kamps, M. (2012). Towards truly human-level intelligence in artificial applications, Cognitive Systems Research, Vol. 14 No. 1, pp. 1-9.
  • Gabbiani, F. & Cox, S.J. (2010). Mathematics for neuroscientists, in. Academic Press, ISBN-10: 9780123748829
  • ISBN-13: 978-0123748829 pp. 498.
  • Goodman, D. & Brette, R. (2008). Brian: A simulator for spiking neural networks in python, Front Neuroinform, Vol. 2, pp. 5.
  • Grove, C.A. & Sternberg, P.W. (2011). The virtual worm: A three-dimensional model of the anatomy of caenorhabditis elegans at cellular resolution, in 18th International C. elegans Meeting, ISBN.
  • Haspel, G., O'donovan, M.J. & Hart, A.C. (2010). Motoneurons dedicated to either forward or backward locomotion in the nematode caenorhabditis elegans, The Journal of Neuroscience, Vol. 30 No. 33, pp. 11151-11156.
  • Hauptvogel, M., Madrenas, J. & Moreno, J.M. (2009). Spindek: An integrated design tool for the multiprocessor emulation of complex bioinspired spiking neural networks, in Evolutionary Computation, 2009. CEC '09. IEEE Congress on, ISBN, pp. 142-149.
  • Hobert, O. (2003). Behavioral plasticity in c. Elegans: Paradigms, circuits, genes, Journal of Neurobiology, Vol. 54 No. 1, pp. 203-223.
  • Lin, C.H. & Rankin, C.H. (2010). Nematode learning and memory: Neuroethology, in Breed, M.D. & Moore, J. (Eds.), Encyclopedia of animal behavior. Academic Press, 978-0-08-045337-8, Oxford, pp. 520-526.
  • Mailler, R., Avery, J., Graves, J. & Willy, N. (2010). A biologically accurate 3d model of the locomotion of caenorhabditis elegans, in Biosciences (BIOSCIENCESWORLD), 2010 International Conference on, ISBN, pp. 84-90.
  • Niebur, E. & Erdos, P. (1993). Theory of the locomotion of nematodes: Control of the somatic motor neurons by interneurons, Mathematical Biosciences, Vol. 118 No. 1, pp. 51-82.
  • Nordlie, E. & Plesser, H.E. (2010). Visualizing neuronal network connectivity with connectivity pattern tables, Frontiers in Neuroinformatics, Vol. 3.
  • Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata, K., Oka, K. & Kawamura, K. (2003). Database of synaptic connectivity of c. Elegans for computation in Technical Report of CCeP, Keio Future. Keio University, ISBN.
  • Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gomez-Rodriguez, F., Camunas-Mesa, L., Berner, R., Rivas-Perez, M., Delbruck, T., Shih-Chii, L., Douglas, R., Hafliger, P., Jimenez-Moreno, G., Ballcels, A.C., Serrano-Gotarredona, T., Acosta-Jimenez, A.J. & Linares-Barranco, B. (2009). Caviar: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory–processing– learning–actuating system for high-speed visual object recognition and tracking, Neural Networks, IEEE Transactions on, Vol. 20 No. 9, pp. 1417-1438.
  • Sleep, R. (2003). In vivo <=> in silico: High fidelity reactive modelling of development and behaviour in plants and animals. A grand challenge for computer science, in Grand Challenge Proposal, ISBN, pp. 10.
  • Stephens, G.J., Johnson-Kerner, B., Bialek, W. & Ryu, W.S. (2010). From modes to movement in the behavior of caenorhabditis elegans, PLoS One, Vol. 5 No. 11, pp. e13914.
  • Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H. & Chklovskii, D.B. (2011). Structural properties of the caenorhabditis elegans neuronal network, PLoS Comput Biol, Vol. 7 No. 2, pp. e1001066.
  • Wakabayashi, M. (2006). Computational plausibility of stretch receptors as the basis for motor control in c. Elegans, Univ. of Queensland, Australia.
  • White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. (1986). The structure of the nervous system of the nematode caenorhabditis elegans, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, Vol. 314 No. 1165, pp. 1-340.
  • Zhu, X. & Chen, Y. (2010). Improved fpga implementation of probabilistic neural network for neural decoding, in ICACIA 2010, ISBN, Sichuan, pp. 198-202.

 

×
Privacy and Data Protection

IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website. By clicking on "Further Information", the full information notice on the types of cookies will be displayed and you will be able to choose whether or not to accept them whilst browsing on the website.

Further Information I Understand